Self-Adaptive Revised Land Use Regression Models for Estimating PM2.5 Concentrations in Beijing, China
نویسندگان
چکیده
Heavy air pollution, especially fine particulate matter (PM2.5), poses serious challenges to environmental sustainability in Beijing. Epidemiological studies and the identification of measures for preventing serious air pollution both require accurate PM2.5 spatial distribution data. Land use regression (LUR) models are promising for estimating the spatial distribution of PM2.5 at a high spatial resolution. However, typical LUR models have a limited sampling point explanation rate (SPER, i.e., the rate of the sampling points with reasonable predicted concentrations to the total number of sampling points) and accuracy. Hence, self-adaptive revised LUR models are proposed in this paper for improving the SPER and accuracy of typical LUR models. The self-adaptive revised LUR model combines a typical LUR model with self-adaptive LUR model groups. The typical LUR model was used to estimate the PM2.5 concentrations, and the self-adaptive LUR model groups were constructed for all of the sampling points removed from the typical LUR model because they were beyond the prediction data range, which was from 60% of the minimum observation to 120% of the maximum observation. The final results were analyzed using three methods, including an accuracy analysis, and were compared with typical LUR model results and the spatial variations in Beijing. The accuracy satisfied the demands of the analysis, and the accuracies at the different monitoring sites indicated spatial variations in the accuracy of the self-adaptive revised LUR model. The accuracy was high in the central area and low in suburban areas. The comparison analysis showed that the self-adaptive LUR model increased the SPER from 75% to 90% and increased the accuracy (based on the root-mean-square error) from 20.643 μg/m3 to 17.443 μg/m3 for the PM2.5 concentrations during the winter of 2014 in Beijing. The spatial variation analysis for Beijing showed that the PM2.5 concentrations were low in the north, especially in the northwest region, and high in the southern and central portions of Beijing. This spatial variation was consistent with the fact that the northern region is mountainous and has fewer people and less traffic, which results in lower air pollution, than in the central region, which has a high population density and heavy traffic. Moreover, the southern region is adjacent to Hebei province, which contains many polluting enterprises; thus, this area exhibits higher air pollution levels than Beijing. Therefore, the self-adaptive revised LUR model is effective and reliable.
منابع مشابه
Influence of Road Patterns on PM2.5 Concentrations and the Available Solutions: The Case of Beijing City, China
With the increase in urbanization and energy consumption, PM2.5 has become a major pollutant. This paper investigates the impact of road patterns on PM2.5 pollution in Beijing, focusing on two questions: Do road patterns significantly affect PM2.5 concentrations? How do road patterns affect PM2.5 concentrations? A land-use regression model (LUR model) is used to quantify the associations betwee...
متن کاملImpact of Land Use on PM2.5 Pollution in a Representative City of Middle China
Fine particulate matter (PM2.5) pollution has become one of the greatest urban issues in China. Studies have shown that PM2.5 pollution is strongly related to the land use pattern at the micro-scale and optimizing the land use pattern has been suggested as an approach to mitigate PM2.5 pollution. However, there are only a few researches analyzing the effect of land use on PM2.5 pollution. This ...
متن کاملEstimating Pm2.5 in the Beijing-tianjin-hebei Region Using Modis Aod Products from 2014 to 2015
Fine particulate matter with a diameter less than 2.5 μm (PM2.5) has harmful impacts on regional climate, economic development and public health. The high PM2.5 concentrations in China’s urban areas are mainly caused by the combustion of coal and gasoline, industrial pollution and unknown/uncertain sources. The Beijing-Tianjin-Hebei (BTH) region with a land area of 218,000 km, which contains 13...
متن کاملSpatio-Temporal Variation of PM2.5 Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China
The air quality in China, particularly the PM2.5 (particles less than 2.5 μm in aerodynamic diameter) level, has become an increasing public concern because of its relation to health risks. The distribution of PM2.5 concentrations has a close relationship with multiple geographic and socioeconomic factors, but the lack of reliable data has been the main obstacle to studying this topic. Based on...
متن کاملComparison of Four Ground-Level PM2.5 Estimation Models Using PARASOL Aerosol Optical Depth Data from China.
Satellite remote sensing is of considerable importance for estimating ground-level PM2.5 concentrations to support environmental agencies monitoring air quality. However, most current studies have focused mainly on the application of MODIS aerosol optical depth (AOD) to predict PM2.5 concentrations, while PARASOL AOD, which is sensitive to fine-mode aerosols over land surfaces, has received lit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016